Visual DataFlex Roadmap - VDF 17.0

John Tuohy
Data Access Worldwide

Ve

Visual DataFlex 2012 / DF 17.

Visual DataFlex 2012 will have two releases
— Visual DataFlex 17.0
— Visual DataFlex 17.1

| will be showing you what’s coming in VDF 17.0
Stephen will show you what’s coming in VDF 17.1

We have a lot to show, so let’s get started with VDF 17.0

E DATA ACCESS

W O R L D W I D E

SN

Longer Table and Column Names

Maximum Table Name (logical name) has been increased from 8 to 31 characters

Employel can now be called EmployeeOvertimeHours

Maximum Column names have been increased from 15 to 32 characters

Employee.InsurancePrvdr can now be Employee.EmployerinsuranceProvider

This applies to all backend databases including the embedded database

This change is fully backwards compatible

No changes required in the table format

Names are still stored in Filelist and .fd files

If you need compatibility with old versions, just keep the name lengths at their old shorter limit
The new size limits were created to maintain maximum backwards compatibility

This has been at the top of developers wish list for a long time

E DATA ACCESS

W O R L D W I D E

—

Studio Enhancements

 Automatic “Todo” support

— A menuitem and a hot key (Ctrl+T) adds a “// Todo:” to your code.
* You just need to add the todo text

— A “To Do Items” panel lists all outstanding todo items
* Clicking on todo item will load that file and jump to that line
* Todo items will also appear in code-explorer

e Better Multi-File Search support
— Match whole words
— Find in files can be accessed from the editor’s context menu
— Itis now easier to add search paths (libraries, etc.)

 There’s more coming, that we can’t tell you about yet

E DATA ACCESS

W O R L D W I D E

Video Walkthrougs

We are working on a series of video walkthroughs and how-tos that will
demonstrate a number of the basic features and capabilities of Visual DataFlex

These will be short and well suited for hosting sites such as You Tube

We want these to:

— Show prospective developers the powers of Visual DataFlex and demonstrate how
quickly a sophisticated data entry applications can be built

— Provide these as tutorials for new programmers

Better Client Web Services

We’ve changed the way web-service clients handle those schema types
that cannot be mapped to a DataFlex native type or struct

Previously types that were defined in unusual ways, were mapped to pure
XML objects

— With structs this created a “bubble-up” problem (I'll explain)

— This required that you deal with the XML, which is more difficult

— Whenever you see a Handle data type, you knew it is going to be more
difficult to consume that service

A new change in how we serialize the XML allows us to isolate these XML
islands in much smaller areas

The end result is that more of the XML parsing and conversion is done for
you

General Entry Improvments ”

* New Entering / Exiting Messages sent to containers

— OnExitArea and OnEnterArea
— These are sent to the container of the control being entered or exited

— They are delegated up to all containers within the view/scope

— They are sent after navigation is complete (a notification, not a verification)

* Improved Masked Date data entry

— If year is not entered, the current year is used
e 12/12is changed to 12/12/2011

— Works with mm/dd/yy and dd/mm/yy formats
— No changes required in your application

E DATA ACCESS

W O R L D W I D E

Data Dictionary Improvements

e @Goals

— We wanted to make it easier to do some of the things that were confusing or hard

* There are a number of requirements that are both unique to data entry applications but quite
common within these types of applications

We wanted to identify these requirements and see if these could be handled more easily and
automatically within the DDs

* We want you to have to do less coding
We wanted to provide features and extensions that developers have been asking for

* We've reviewed your requests and your “how-to” questions to see if we can make changes
that makes your life easier.

We wanted to look at some of the existing DD features and see if they can be improved

We want you to be able to empower your end-user and make it easier to perform data
entry and data lookup

We want to maintain backwards compatibility with your existing DDs and your existing
applications

DDs: Cascade Delete Validation

New message: Validate Cascade Delete

— This new validation event is sent to every record deleted
as part of a cascade delete

— If an error is raised or the validation returns non-zero the

deletion is canceled and the entire transaction is rolled
back

Function Validate_Cascade Delete Returns Boolean
If (OrderDtl.Extended Price>100) Begin
Error DFERR OPERATOR "Cannot delete orders with details items over 100“
Function_Return True
End
End Function

DDs: Pre and Post Find Events

We’'ve added pre and post Find events

Procedure OnPreFind Integer eMessage

Procedure OnPostFind Integer eMessage Boolean bFound

This is sent for DD find (and clear) messages

— Request_Find, Find, FindByRowld, Find_By Recnum, Request_Assign
and Clear

— The find type is passed in eMessage
This is sent to the DD that owns the table for the find

This is called before / after the DD operation is complete
— Therefore, it is reentrant safe so you can perform other DD operations

/
o/

DDs: Refresh Message sent tO"DEC
Containers

After a save, find, clear or delete operation DDs now send Refresh to DEO
Containers as well as DEO Controls

A container Refresh does nothing and is ideal for augmentation

— This provides a hook that allows a view or part of a view to react to the major
DD operations

In addition, we’ve fixed a bug where DEO expressions did not always
receive the Refresh message when it should (it was over optimized)

/
DDs: Full DD Support for Text Fields

* Previously

— With Windows DEOs, the DDs and DEOs only partially supported a DD
representation of text fields

* Text field data was moved directly between the table buffer and the DEO bypassing
the DD buffer

* Most of the time this did not matter (which is why we did this). There are times

when this proves to be a limitation.

— With WebApp and with batch processes, you could use DD text fields but you
had to specify in your DDO that you wanted to use extended DD fields

* In17.0
— Text DEOs (cDbTextEdit and cDbRichEdit) are now full DEOs and can use the
local DD buffers for text fields, just like the other DD fields
e This is actually configurable for backwards compatibility purposes

— You no longer need to specify that you want to define an extended field — it’s
automatic

E DATA ACCESS

W O R L D W I D E

DDs: Better Parent / Child cc
Support

* Previously finds in a relates-to constrained child DDO might re-find and refresh the
contents of the constraining parent
This could result in unsaved changes in a parent DD getting lost
This design limitation was particularly apparent with header / detail types of views
This is why we always require that headers are saved before entering the detail grid

Take a look at the order entry view and you will see custom code that is required to
make this all work

The framework has worked this way since DataFlex 3.0

* This has been re-engineered for 17.0

The DDOs now handle this much more intelligently and saves and finds only occur when
you expect them to

This means that the header/detail “save first” rule is not needed and that a great deal of
custom header/detail view code can be removed

This is a bit hard to explain but the net result is that header/detail require less code and
they simply work the way you expect them to

/

DDs: Null Parent Supprt

A child DD may now specify that a parent record may be null
This is controlled with the new method Set ParentNullAllowed

Set ParentNullAllowed SalesP.File_Number to True

The framework now understands the null parent concept and
handles it properly

— No attempt is made to create a new blank record during the save

— Autofind and Find-Required will accept a null record as valid

— You can switch a null parent to a real parent and visa versa
This can be defined at the DD class or object level

This will be modeled in the Studio

E DATA ACCESS

W O R L D W I D E

DDs: DD Remember ield

DDs have always supported the ability to set default values using field_defaults

— This has not changed because it’s a great feature
DDs support the Retain / RetainAll field options but these never really fit well within the
Framework

— This has not changed because it’s not such a great feature (i.e., left alone compatibility reasons)
In 17.0 we are introducing a retain option replacement called DD Remember

DD Remember allows you to:
— Assign and remember a specific value
* When you clear a view, this remembered value will be used as the new default
Remember the last value entered (similar to retain)
* When you clear a view, the value currently in the DEO will be used as the new default
This can be assigned at the DD level or at the DEO level
Even better, this can be set directly by your end users
* Menu items can be assigned to your menus, context menus and tool bars to do this

* This empowers your users and makes data entry faster and more flexible
* No programming is required to support this

This works differently and properly with parent fields where you can remember an entire parent
record

We will show you this — you really have to see it

E DATA ACCESS

W O R L D W I D E

/,

DDs: Committed Records and DD_Commit

With data entry application a record tends to have two distinct modes.
— Either it is new or it is committed
* Most often this aligns with whether a record is new or not (i.e., has it been saved once)

— A committed record often has restrictions as to what can be changed
* Once committed, there are certain fields you should not be able to change
* Once committed, you often want to restrict the switching of certain parent records

— Enforcing these restrictions requires custom coding — often outside of the DD
Here is how the DD committed record feature works:

— You can now specify if a record is committed or not
* By default, it is committed if has already been saved but you can change this

A new DD field option, DD_Commit, can be applied to any DD Field. If set, and the record is
committed, the DEO for that field will be dynamically disabled

A new method, ParentNoSwitchlfCommitted, allows you to restrict a committed record’s parent
from being switched.

This takes a common data entry requirement, which can be difficult to implement and automates it.

// Once committed, we don't want to be able to change ordered by
Set Field Option Field OrderHea.Ordered By to DD_COMMIT

// If a committed order, don't allow customer parent to be changed
Set ParentNoSwitchIfCommitted Customer.File Number to True

/
o/

DDs: Local DD Relationsips

Table relationships can now be defined locally within a DD
class or object

Any DD can now use global relates, which are defined within
your table, or the new local relates, which are defined within
the DD

— The pbUseDDRelates property controls this

If local relates are used you define the relationships with a
new message:

— Set Field_Related_FileField

Set pbUseDDRelates to True
Set Field Related FileField Field OrderHea.SalesPerson ID to File Field SalesP.ID
Set Field Related FileField Field OrderHea.Cust Num to File Field Customer.Cust Num

 This should reduce the need for alias tables

/
. , = / /
DDs: Better Alias Table/DD Support

It is now much easier to create, maintain and use Alias tables and DDs
The Studio now has an option for creating an Alias Table & an Alias DD
class

Alias DDs are sub-classed from their master Table’s DD
— The Set Alias_File message specifies that the DD sub-class is an alias

An Alias DD class
— Inherits the all of the behaviors of the super class except

— All global relationships and required relationships are cleared for an alias and
your are expected to define your own with local relates

— Prompts and Zooms are cleared for the alias
There is no need to set alias and master attributes for the tables

— itis figured out automatically.

DDs: Better Alias Table/DD Support

e Here is what an alias DD will look like:

Use SalesP.dd
Open SalesPManager
Class cSalesPManagerDataDictionary is a SalesP_DataDictionary
Procedure Construct Object
Forward Send Construct Object
Set Alias File to SalesPManager.File Number

Set pbForeignReadOnly to True
End Procedure

End Class

 This will be modeled in the Studio

Longer Table and Column Names

Studio ToDo panel

Studio enhanced multi-file search
Video Walkthroughs
Easier to Use Client Web Services

Ul: Easier Date entry

Ul: Entering / Exiting delegates to containers

DD:
DD:
DD:
DD:
DD:
DD:
DD:
DD:
DD:
DD:

Cascade Delete Validation

Pre and Post Find Events

Better Refresh Event

Full DD support for text field DEOs
Better handling of header/detail views
Null Parent Support

DD Remember

Committed Record feature

Local DD Relationships

Better Alias Table Support

.

Summary of VDF 7.0

5y DATA ACCLSS

W O R L D W I D E

