
Visual DataFlex Roadmap - VDF 17.0

John Tuohy

Data Access Worldwide

Visual DataFlex 2012 / VDF 17.0

• Visual DataFlex 2012 will have two releases
– Visual DataFlex 17.0
– Visual DataFlex 17.1

• I will be showing you what’s coming in VDF 17.0

• Stephen will show you what’s coming in VDF 17.1

• We have a lot to show, so let’s get started with VDF 17.0

Longer Table and Column Names
• Maximum Table Name (logical name) has been increased from 8 to 31 characters

– Employe1 can now be called EmployeeOvertimeHours

• Maximum Column names have been increased from 15 to 32 characters

– Employee.InsurancePrvdr can now be Employee.EmployerInsuranceProvider

• This applies to all backend databases including the embedded database

• This change is fully backwards compatible

– No changes required in the table format

– Names are still stored in Filelist and .fd files

– If you need compatibility with old versions, just keep the name lengths at their old shorter limit

– The new size limits were created to maintain maximum backwards compatibility

• This has been at the top of developers wish list for a long time

Studio Enhancements

• Automatic “Todo” support

– A menu item and a hot key (Ctrl+T) adds a “// Todo:” to your code.

• You just need to add the todo text

– A “To Do Items” panel lists all outstanding todo items

• Clicking on todo item will load that file and jump to that line

• Todo items will also appear in code-explorer

• Better Multi-File Search support

– Match whole words

– Find in files can be accessed from the editor’s context menu

– It is now easier to add search paths (libraries, etc.)

• There’s more coming, that we can’t tell you about yet

Video Walkthroughs

• We are working on a series of video walkthroughs and how-tos that will
demonstrate a number of the basic features and capabilities of Visual DataFlex

• These will be short and well suited for hosting sites such as You Tube

• We want these to:

– Show prospective developers the powers of Visual DataFlex and demonstrate how
quickly a sophisticated data entry applications can be built

– Provide these as tutorials for new programmers

Better Client Web Services
• We’ve changed the way web-service clients handle those schema types

that cannot be mapped to a DataFlex native type or struct

• Previously types that were defined in unusual ways, were mapped to pure
XML objects

– With structs this created a “bubble-up” problem (I’ll explain)

– This required that you deal with the XML, which is more difficult

– Whenever you see a Handle data type, you knew it is going to be more
difficult to consume that service

• A new change in how we serialize the XML allows us to isolate these XML
islands in much smaller areas

• The end result is that more of the XML parsing and conversion is done for
you

General Entry Improvements
• New Entering / Exiting Messages sent to containers

– OnExitArea and OnEnterArea

– These are sent to the container of the control being entered or exited

– They are delegated up to all containers within the view/scope

– They are sent after navigation is complete (a notification, not a verification)

• Improved Masked Date data entry

– If year is not entered, the current year is used

• 12/12 is changed to 12/12/2011

– Works with mm/dd/yy and dd/mm/yy formats

– No changes required in your application

Data Dictionary Improvements
• Goals

– We wanted to make it easier to do some of the things that were confusing or hard

• There are a number of requirements that are both unique to data entry applications but quite
common within these types of applications

• We wanted to identify these requirements and see if these could be handled more easily and
automatically within the DDs

• We want you to have to do less coding

– We wanted to provide features and extensions that developers have been asking for

• We’ve reviewed your requests and your “how-to” questions to see if we can make changes
that makes your life easier.

– We wanted to look at some of the existing DD features and see if they can be improved

– We want you to be able to empower your end-user and make it easier to perform data
entry and data lookup

– We want to maintain backwards compatibility with your existing DDs and your existing
applications

DDs: Cascade Delete Validation
• New message: Validate_Cascade_Delete

– This new validation event is sent to every record deleted
as part of a cascade delete

– If an error is raised or the validation returns non-zero the
deletion is canceled and the entire transaction is rolled
back

Function Validate_Cascade_Delete Returns Boolean

 If (OrderDtl.Extended_Price>100) Begin

 Error DFERR_OPERATOR "Cannot delete orders with details items over 100“

 Function_Return True

 End

End_Function

DDs: Pre and Post Find Events

• We’ve added pre and post Find events

 Procedure OnPreFind Integer eMessage
 Procedure OnPostFind Integer eMessage Boolean bFound

• This is sent for DD find (and clear) messages
– Request_Find, Find, FindByRowId, Find_By_Recnum, Request_Assign

and Clear

– The find type is passed in eMessage

• This is sent to the DD that owns the table for the find

• This is called before / after the DD operation is complete
– Therefore, it is reentrant safe so you can perform other DD operations

DDs: Refresh Message sent to DEO
Containers

• After a save, find, clear or delete operation DDs now send Refresh to DEO
Containers as well as DEO Controls

• A container Refresh does nothing and is ideal for augmentation

– This provides a hook that allows a view or part of a view to react to the major
DD operations

• In addition, we’ve fixed a bug where DEO expressions did not always
receive the Refresh message when it should (it was over optimized)

DDs: Full DD Support for Text Fields
• Previously

– With Windows DEOs, the DDs and DEOs only partially supported a DD
representation of text fields
• Text field data was moved directly between the table buffer and the DEO bypassing

the DD buffer

• Most of the time this did not matter (which is why we did this). There are times
when this proves to be a limitation.

– With WebApp and with batch processes, you could use DD text fields but you
had to specify in your DDO that you wanted to use extended DD fields

• In 17.0
– Text DEOs (cDbTextEdit and cDbRichEdit) are now full DEOs and can use the

local DD buffers for text fields, just like the other DD fields
• This is actually configurable for backwards compatibility purposes

– You no longer need to specify that you want to define an extended field – it’s
automatic

DDs: Better Parent / Child constrained
Support

• Previously finds in a relates-to constrained child DDO might re-find and refresh the
contents of the constraining parent
– This could result in unsaved changes in a parent DD getting lost

– This design limitation was particularly apparent with header / detail types of views

– This is why we always require that headers are saved before entering the detail grid

– Take a look at the order entry view and you will see custom code that is required to
make this all work

– The framework has worked this way since DataFlex 3.0

• This has been re-engineered for 17.0
– The DDOs now handle this much more intelligently and saves and finds only occur when

you expect them to

– This means that the header/detail “save first” rule is not needed and that a great deal of
custom header/detail view code can be removed

– This is a bit hard to explain but the net result is that header/detail require less code and
they simply work the way you expect them to

DDs: Null Parent Support
• A child DD may now specify that a parent record may be null

• This is controlled with the new method Set ParentNullAllowed

 Set ParentNullAllowed SalesP.File_Number to True

• The framework now understands the null parent concept and
handles it properly
– No attempt is made to create a new blank record during the save

– Autofind and Find-Required will accept a null record as valid

– You can switch a null parent to a real parent and visa versa

• This can be defined at the DD class or object level

• This will be modeled in the Studio

DDs: DD Remember Field
• DDs have always supported the ability to set default values using field_defaults

– This has not changed because it’s a great feature

• DDs support the Retain / RetainAll field options but these never really fit well within the
Framework
– This has not changed because it’s not such a great feature (i.e., left alone compatibility reasons)

• In 17.0 we are introducing a retain option replacement called DD Remember

• DD Remember allows you to:
– Assign and remember a specific value

• When you clear a view, this remembered value will be used as the new default

– Remember the last value entered (similar to retain)
• When you clear a view, the value currently in the DEO will be used as the new default

– This can be assigned at the DD level or at the DEO level

– Even better, this can be set directly by your end users
• Menu items can be assigned to your menus, context menus and tool bars to do this

• This empowers your users and makes data entry faster and more flexible

• No programming is required to support this

– This works differently and properly with parent fields where you can remember an entire parent
record

• We will show you this – you really have to see it

DDs: Committed Records and DD_Commit
• With data entry application a record tends to have two distinct modes.

– Either it is new or it is committed
• Most often this aligns with whether a record is new or not (i.e., has it been saved once)

– A committed record often has restrictions as to what can be changed
• Once committed, there are certain fields you should not be able to change

• Once committed, you often want to restrict the switching of certain parent records

– Enforcing these restrictions requires custom coding – often outside of the DD

• Here is how the DD committed record feature works:
– You can now specify if a record is committed or not

• By default, it is committed if has already been saved but you can change this

– A new DD field option, DD_Commit, can be applied to any DD Field. If set, and the record is
committed, the DEO for that field will be dynamically disabled

– A new method, ParentNoSwitchIfCommitted, allows you to restrict a committed record’s parent
from being switched.

– This takes a common data entry requirement, which can be difficult to implement and automates it.

// Once committed, we don't want to be able to change ordered_by

Set Field_Option Field OrderHea.Ordered_By to DD_COMMIT

// If a committed order, don't allow customer parent to be changed

Set ParentNoSwitchIfCommitted Customer.File_Number to True

DDs: Local DD Relationships
• Table relationships can now be defined locally within a DD

class or object

• Any DD can now use global relates, which are defined within
your table, or the new local relates, which are defined within
the DD
– The pbUseDDRelates property controls this

• If local relates are used you define the relationships with a
new message:
– Set Field_Related_FileField

 Set pbUseDDRelates to True

 Set Field_Related_FileField Field OrderHea.SalesPerson_ID to File_Field SalesP.ID

 Set Field_Related_FileField Field OrderHea.Cust_Num to File_Field Customer.Cust_Num

• This should reduce the need for alias tables

DDs: Better Alias Table/DD Support
• It is now much easier to create, maintain and use Alias tables and DDs

• The Studio now has an option for creating an Alias Table & an Alias DD
class

• Alias DDs are sub-classed from their master Table’s DD

– The Set Alias_File message specifies that the DD sub-class is an alias

• An Alias DD class

– Inherits the all of the behaviors of the super class except

– All global relationships and required relationships are cleared for an alias and
your are expected to define your own with local relates

– Prompts and Zooms are cleared for the alias

• There is no need to set alias and master attributes for the tables

– it is figured out automatically.

DDs: Better Alias Table/DD Support
• Here is what an alias DD will look like:
Use SalesP.dd

Open SalesPManager

Class cSalesPManagerDataDictionary is a SalesP_DataDictionary

 Procedure Construct_Object

 Forward Send Construct_Object

 Set Alias_File to SalesPManager.File_Number

 Set pbForeignReadOnly to True

 End_Procedure

End_Class

• This will be modeled in the Studio

Summary of VDF 17.0

• Longer Table and Column Names

• Studio ToDo panel

• Studio enhanced multi-file search

• Video Walkthroughs

• Easier to Use Client Web Services

• UI: Easier Date entry

• UI: Entering / Exiting delegates to containers

• DD: Cascade Delete Validation

• DD: Pre and Post Find Events

• DD: Better Refresh Event

• DD: Full DD support for text field DEOs

• DD: Better handling of header/detail views

• DD: Null Parent Support

• DD: DD Remember

• DD: Committed Record feature

• DD: Local DD Relationships

• DD: Better Alias Table Support

